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I. BACKGROUND

Accurate cost estimation of alternative weapons systems
is essential for long range military planning and budgeting
decisions. The choice among competing systems is based on
trade-of fs between performance parameters and mission require-
ments with an ever increasing importance being placed on cost.
In fact, with the issuing of Department of Defense (DoD)
Instruction 5000.1, cost has been upgraded to a principle
design parameter. That directive defines specific "Design to
Cost" policies during requirements formulation in determining
which system is most cost effective.

Traditionally, weapon system cost estimates have been
prepared using Industrial Engineering (I.E.) techniques.
These techniques involved detailed studies of the operations
and materials required to produce the new system. The cost
estimate frequently required several thousand hours to pro-
duce with volumes of supporting documentation. Small changes
in design often necessitate extensive revision of these esti-
mates. In spite of all the time and effort involved in pre-
paring these estimates, their accuracy leaves much to be
desired. This is evidenced by the large cost overuns cited
by the annual General Accounting Office (GAO) reports to
Congress. In 1972, for example, the GAO reported that the Navy
had experienced a cost growth of $19 billion on 24 weapon sys-
tems in FY 1971. Approximately 15% of this cost growth was
attributed to poor initial cost estimates for the weapon systems.
The report went on to make the following recommendation:

"Develop and imlement DOD wide guidance for consistent
and effectivr cost estimating procedures and practices
particularly with regard to, ... an effective indepen-
dent review of cost estimates."

This report and other high level directives implementing
its recommendations have resulted in increased interest and
reliance on a statistical approach called parametric cost
estimation defined by Baker ( 2) as

"An estimate which predicts costs by means of explanatory
variables such as performance characteristics, physical
characteristics, and characteristics relevant to the
development process, as derived from experience on
logically related systems."

The construction and use of "cost estimating relationships"
(CER's) is the basis for making independent parametric cost
estimates. CER's are mathematical equations which relate sys-
tem costs to various explanatory variables. They are based on
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the premise that the cost of a weapons sytem is logically
related in a quantifiable way to the system's physical andr performance characteristics. They are most generally
derived through statistical regression analysis of historical
cost data. These techniques are described in (14). Some
examples of their use appear in (9 ), (10), (15), and (17).

The parametric approach has some distinct advantages
and disadvantages compared to I.E. methodology. on the
plus side are:

1. Parametric cost estimates can be developed during
the concept formulation stage of the acquisition
process before detailed engineering plans are
available. These early cost estimates can be
used to:

(a) Identify possible cost/performance trade-
offs in the design effort.

(b) Provide a basis for cost/effectiveness
review of performance specifications.

(c) Provide information useful in the ranking
of competing alternatives.

(d) Suggest a need for identifying and
considering new alternatives.

2. Historical cost data incorporates system development
setbacks such as engineering and design specification
changes and other items that are not identifiable at
the time of design. Industrial engineering estimates
tend to be optimistic in that they don't allow for
unforeseen problems. Unexpected engineering or
design changes usually bring about unexpected in-
creases in system cost. Cost estimating relationships
based on historical data will incorporate some of
these unknowns into the cost estimate.

Along with the cited advantages of parametric cost esti-
mation, there are some troublesome aspects. Assumptions,
subjective assessments and choice of methodolgy can lead
different analysts to different estimates. This kind of
ambiguity seems unavoidable in empirical model building
studies and is the basis for some critcism. While there are
general guidelines as to what constitutes sound statistical
practice, there is rarely a universally accepted "best"
approach to modeling and prediction.
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This paper focuses on the role of analogy in empirical
model building. A measure of analogy between systems of the
same gene~ral type is proposed and its properties studied.
A new criteria for variable selection based on this measure
is explored and a parametric cost estimation example is
given.

II. THE ROLE OF ANALOGY IN PREDICTION

The phrase "logically related system" in the cited
definition of parametric cost estimation is subject to all
kinds of interpretation and degrees of relation. Certainly
there is no historical system identical in all respects to
the object system (the system whose cost we wish to predict)I
else the problem would not exist. At the other extreme, all
military systems are "logically related" in (at least) the
sense that they are military systems. Message carrying
pidgeons, air-to-air missiles, jet aircraft and frizbees are
"logically related" in that they all fly. Obviously, the
analyst must take into account the degree of analogy between
each system (which is a candidate for the historical data
base) and the object system. Analogy, according to Webster,
is "a partial similarity between like features of two things
on which a comparison may be based." How does one measure
the degree of analogy between "logically related" systems and
how can one exploit these partial similarities in predicting
the cost of an object system?

Having gathered and adjusted historical data on systems
judged more-or-less analogous to a proposed system whose cost
is to be estimated, the analyst proceeds with the task of
developing a "best" CER. This involves selecting the form
of the CER, deciding which of the system variables (performance
characteristics, design specifications, etc.) to include as
predictor variables, and assessing the precision of the
estimate. In parametric cost estimation, this is usually done
through the use of multiple regression and some standard

variable selection criterion such as maximizing adjustedR2
(which is equivalent to minimizing mean square error (MSE]),
maximizing F, using Mallow's Cp , etc.

All of these techniques share two properties: (1) For
any fixed number of variables in the prediction equation, the
optimal set of variables is that set which minimizes the MSE;
(2) They all ignore the values of the variables of the system
whose cost is being estimated. The first of these properties
is reasonable but myopic when the object is prediction. The
second property seems contrary to common sense.
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Suppose there are n systems in the historical data base.

Associated with the ith such system is a cost Yi and values of

p (candidate) predictor variables Xi,...,Xij,...,X ip. Let

Y' = (YI...Yi...Yn) and V = (X1 ...Xij*Xnj), j I 1,2,...,p

denote these historical costs and system characteristics.
Furthermore, let

in and
J n Xklkj

1 I (X.X.
ij n-i k1 Xki-Xi (j- j

denote the sample means and covariances. Denoting the values
of the proposed system by lower case letters, we wish to pre-
dict its cost y by exploiting the predictive ability its
characteristics X' = (x1,...,xi,...,Xp). This predictive

ability is inferred from the apparent relation between historical
costs and characteristics and the degree of analogy between the
proposed system and these historical data. How analogous is
this proposed system to the historical data?

(a) Marginal comparisons: Analogy on a single dimension
is straightforward. A statistic commonly used as a non-
negative distance index is simply the square of the standardized
distance between x. and the mean of the X ijs, namely

Mj =( }2
M 5. 2

J

where s. is defined as (s.j) . Large values of this statistic

indicate a low degree of analogy.

(b) High dimensional comparisons: The collection of
marginal indices {M1,M 2 ,... ,Mp I can give a very misleading

impression of the overall degree of analogy. Even when M. is

small for every j, the proposed system can be terribly non-
analogous to the historical data. A simple bivariate example
will illustrate this assertion. Suppose X1 and X2 denote

weight and maneuverability, respectively, and that x1 and x2
are each within one standard deviation of their respective
means, i.e.,

M1  M2  i

Ai
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Suppose further that, historically, heavy systems tended to
be less maneuverable, i.e., Px x2 < 0, but the proposed

system is a little heavier and slightly more maneuverable
than the average. The situation is depicted in

Figure 1

k•tz

i .E, ..**i

We see that (xlx 2) is marginally analogous to the historical

data on both weight and maneuverability but not at all
analogous when viewed in two dimensions. Comparing (xl,x2)

to (Xl,X2) marginally ignores important relational information.
The geometry in higher dimensional spaces is more difficult to
grasp.

A measure of analogy which incorporates relational
information was suggested in 1930 by P.C. Mahalanobis (12).
He proposed

M N ( M_ _(2)), -

as a measure of the distance between two multivariate popu-
(1) (2 epetvly)n

lations with mean vectors p and R respectively, and
common covariance matrix [. Replacing the parameter values
by estimates, we obtain (in our notation)

where S = (s.j) and X' = (X"' )" Except for a multi-
ii l" p 2

plicative constant, this is Hotelling's T statistic used
to test that x and the historical data came from the same
population. In the previous bivariate example, it is easy
to show that
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M4 =-- [M1-2p (MM 2 ) +M21-p

which can be arbitrarily large even when M and M are small.

For example, with M1 = M2 = C,

M and lim M =.

In what follows, we propose Mahalanobis distance M as a
measure of analogy and discuss its implications in the process
of tailoring a CER to a specific object system for the purpose
of predicting that system's cost. This is a distinct depar-
ture from standard procedures recommended (14), (15) ana used
in developing every CER with which the authors are familiar.
The distinction is fundamental and goes beyond measure of
analogy. The standard approach appears more oriented toward
developing a cost explaining equation relating costs of a
class (e.g., sonars, airframes, tanks, etc.) of historical
systems to the characteristics of those systems. One need not
have any specific object system in mind while developing such
a general purposto descriptive equation. In fact, armed with
an airframe CER based on the explanatory variable "weight", two
radically different airframes of the same weight would be
estimated to cost the same amount. Mallows (13) defined six
potential uses of a regression equation which include (a) pure
description and (b) prediction. Lindley (11) emphasizes that
the technique used to develop a regression equation ought to
be related to the intended use. In the present context, the
intended use is prediction of the cost of a specific system so
that using a CER (which was developed to describe historical
relations without reference to any specific object system)
to predict cost of a specific system is contrary to Lindley's
recommendation and common sense.

III. EXPLOITING ANALOGY IN DEVELOPING
MODELS FOR PREDICTION

As mentioned in the previous section, most standard
variable selection techniques share the property that, for
any given number of variables in the regression function, the
optimal set is that set which minimizes residual mean square

error (or, equivalently, maximizes r 2). The objective system
may be rather nonanalogous to the historical data (large M)
when we consider the subset of variables identified as
"optimal" by the criteria used to develope the CER. Often,
there are several k-variable models which come close to the
"optimum" in terms of r2 and other measures of model aptness
based on residual analysis. In these cases, by using a
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slightly suboptimal set of prediction variables (slight
2decrease in r ) it may be possible to substantially improve

the degree of analogy (decrease in R ). What is the role
of analogy in prediction and how can one evaluate the trade-
off of fit for analogy?

The width of the prediction interval at the point corres-
ponding to the objective system is a numeraire which seems like
a reasonable basis for choosing between alternative models. We
shall consider a monotone function of the width for simplicity,
namely, the square of the half-width, viz.

W = F *MSE*( M + n+ -,1-.2;1, n- k- 1n

where F is the (1 -2)th fractile of an F distribution
1 ;1,n-k-1

with 1 and n-k-l degrees of freedom. This measure W combines
"fit" (MSE) and "degree of analogy" (M) with a factor F which
penalizes for using too many variables (increasing k) or ex-
cluding points from the data base (decreasing n). In this
form, the role of analogy, as measured by Mahalanobis distance,

M n+1is evident. It enters as a term in the multiplier (- + L-)
n-l n

of MSE. Failure to consider this factor in selecting a CER
could have a marked effect on predictor precision as measured
by prediction interval width. We hasten to point out that the
W-criterion is not being suggested as a universally "best"
variable selection procedure. Rather, it should be viewed as a

device to reduce the 2P candidate models to a more manageable
number so that detailed residual analysis is economically
feasible. Models which appear attractive under criteria based

on maximizing R2 but are far from W-optimal obviously involve
relatively large extrapolation at the point corresponding to the
object system. With extrapolation comes concern that the model
which seems to fit the historical data best may not be valid at
the point under prediction.

IV. PROPERTIES OF W

While the quantity W is related to a 100(l-a)% prediction

interval, it is not true that y(x) ± w covers y(x) with
probability 1-a when the same data is used to select the model
and compute the prediction interval. The confidence coefficient
resulting from using the model with the smallest W will, in
general, be less than i-a. This drawback is not limited to the
W-criterion but is a general problem associated with empirical
model building and subsequent inference using the same data.
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It is well known (for example, see (5) and (16)) that choosing

the k-variable model which maximizes R2 has an inflationary

effect on the distribution of R2 , invalidating the usual signi-
ficance tests. Distribution-free exact tests have recently been
developed by Edwards and Wallenius (5) to deal with this
problem. Distributional properties of W are not well under-
stood unless model building and inference are made on independent
data sets, a luxury of sample size not commonly encountered in
parametric cost estimation. A monotonicity result which is
useful in variable selection algorithms and decisions concerning
inclusion or exclusion of points in the historical data base is
given in the following

THEOREM: Let Mk denote the Mahalanobis distance between

u (Xl,...,xk) and = (Xi"'''- ) for k = l,...,p and let

a .iM -M.
_ j+l I2

(x 2
Then A. = whereS (l-r )

222 2

S21~ S 1 2/s2 ,9 +S S 1( Ri.)3 =S21S11 S12 /S 22'xj = j+l 21S 11 (x j-j

and S = 1 is the partitioned covariance matrix of
S S

XX 2 ,...Xj+l with S22 being a scalar.

A proof of the theorem is given in ( 8). Since 0< r2 < 1
and S22 is the sample variance of Xj+ I , it follows that A. > 0

with equality if, and only if, x = x I , that is, if xj+1 lies

on the hyperplane defined by the regression of Xj+1 on the

variables (X,... ,X.). Thus, augmenting a specific j-variable

cannot decrease Mahalanobis distance (i.e., increase analogy) so
that, using the W-criterion, a variable will be added to a given
model only if, by so doing, the decrease in MSE is large enough
to offset increases in M and F. This observation explains why
W-optimal models tend to be more parsimonious than MSE optimal
models, a desireable property in view of the commonly held
opinion among satisticians that the minimum MSE criterion
frequently results in overfitting.

Besides providing this kind of insight into the effect on
W of adding an explanatory variable to a given model, the mono-
tonicity theorem is useful in developing a branch and bound
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algorithm similar to that of Furnival (6 which makes it
possible to efficiently identify models with small W's

without computing all 2P-1 possible regressions. These
computational aspects are discussed in (8 ) along with a
treatment of various suboptimal search algorithms (e.g.,
forward selection, backward selection, etc.)

The monotonicity theorem is also useful in dealing with
questions about setting aside points in the historical data
base. It is quite plausible that inclusion of one or more
systems in the data base which are rather nonanalogous to the
object system and/or the other reference systems could have
a detrimental effect on prediction. The influence of indi-
vidual observations or groups of observations on various
quantities of interest in a statistical analysis has received
considerable attention in recent literature (3), (4), (7),
etc. Most of this work is concerned with identifying outliers
ax.d assessing the effect of setting them aside on estimates of
model parameters. Since the focus of our work is on pre-
diction, these earlier studies are not directly applicable.
Space limitations here do not allow for treatment of questions
on the role of analogy in choosing the data base. The
interested reader is referred to ( 8) for further information.

V. APPLICATION

Data that formed the basis for an actual parametric cost
estimation study (18) was used to compare the performance of
the W-criterion with other standard and not-so-standard variable
selection techniques. The data consisted of costs and 12 design/
performance characteristics of 23 single engine jet interceptors
built between 1947 and 1969. The object of the study was to
predict costs of the F-14 and F-15 aircraft. As is comon
practice, see (10), (14), and (15) for example, the data were
log-transformed prior to analysis. (Our analysis confirmed
that regressions were more nearly linear and residuals better
behaved using the transformed data.) Cost was defined as 6
"total flyaway cost (adjusted to 1972 constant dollars x 10

of the 100th production aircraft." The candidate predictor
variables were

X 1 = Wing Loading Ratio

X2 = Aspect Ratio

X3 = Full to Empty Weight Ratio

X4 = Thickness-to-Cord Ratio

X5  = Lift to Drag Ratio

X6 = Total Avionics Input Power in kva

X 7  = Maximum Speed in knots (Clean, Combat Weight)

X 8 = Weight Empty in lbs



10

X 9 Rate of Climb in ft/min, (sea level, combat weight
and power)

= Combat Ceiling in feet

= 1 Ferry Range in nautical miles

x 1 Sea Level Static Thrust (max) in lbs.

The criteria compared were Minimum MSE, Minimum C K
Maximum F, Maximum R 2(subject to a 1% "elbow rule"I ), Minimum

Mean Square Error of Prediction (MSEP 2), and Minimum W (nominal
95% prediction interval). The procedure followed consisted of
setting aside each aircraft, finding the best model under each
of the 6 criteria based on the remaining 22 data points and
predicting the cost of the deleted aircraft using these "optimal"
models. While selecting a "best" CER based on any single vari-r able selection criterion is a myopic data analytic practice,
it is a necessary evil if the relative performance of different
criteria are to be compared over a given data set. Absolute
errors (differences between actual cost and predicted cost) and
Minimum W gain (difference in Minimum W absolute error and the
absolute errors of other optimal models) were computed and are
displayed in Table 1. A gain denoted by "0" indicates the
optimal model selected by a given criterion coincided with the
Minimum W model while "00" indicates different models but a
gain of less than .5 x 10-2.

1 2
Since R is nondecreasing as variables are added to the

prediction equation, a stopping rule is needed. It is rather
commnon to stop adding variables when the marginal increase in
2 .
R is small. We defined "small" to mean "no more than 1%

increase in R2could be achieved by adding more variables."

2Minimum MSEP, proposed in reference ( 1), is the only
other selection criterion besides minimum W which takes into
account the point at which prediction is to be made. While
the concept seems reasonable at first glance, its successful
application requires a good estimate of the bias in each
sukzuodel. This logically requires knowledge (or a good estimate)
of the true E(ylx). But if this quantity were known, the
prediction problem would be solved. The results of numerical
work confirms our theoretical skepticism of Allen's approach.
Detailed criticism can be found in (8).
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In the course of the analysis, 95% prediction intervals
were calculated for each of the 23 costs based on the models
selected by the various criteria. Their average widths and
actual coverage frequencies are given in

Table 2. Average Nominal 95% Prediction Interval Widths and
Frequency of Coverage in Logarithmic Units

Min MSE Min C kMax F R2 MSEP Min W

Avrg. Width 1.385 1.250 1.778 1.287 2.288 1.223
Coverage 86.96 91.30 91.30 91.30 95.65 95.65

Examining tables 1 and 2, we note that the minimum W
criterion had the smallest mean absolute error of all criteria
tested. By design, it has the shortest prediction interval
width and, quite surprisingly, was unsurpassed in the fre-
quency with which it covered the actual cost. At least for
this data set, prediction intervals seem to be well centered
and tight. This experience, while certainly inconclusive,
was repeated with other data sets.

Tables 3-8 are provided for comparing actual models
selected by the various criteria. The selected models were
ranked according to their frequency of occurrence and these
ranks were used for labeling purposes. Maximum F was most
parsimonious, selecting "weight empty" as the best predictor
for the cost of all but two aircraft. Minimum W, minimum CK
and R 2 were often in agreement in selecting variables 2, 5, 8,
and 12. As is often the case, minimum MSE seems to overf it,
using up to eleven variables in eight different models.
Because MSEP selected 20 different models for the 23 air-
craft (none of which were selected by other criteria), these
models are indicated by "x". Incidently, the model selected
in the document from which the data were obtained (18),
was based on variables 4, 6, and 8, a model not selected by
any of our six test criteria.



13

TABLE 3. Minimum W Models and Aircraft Predicted

A/C Variables

x 1 X 2  X3  X4  X5  X6  X7  X8  X9  X1 0  X1 1  x1 2

F-80 2 2 2 2 2
FH-1 2 2 2 2 2
F2H-1 3 3 3 3 3 3 3 3 3
F7U-1 1 1 1 1
F-84E 1 1 1 1

F3D-1 2 2 2 2 2
F-86H 2 2 2 2 2
F9F-8 4 4 4 4
F4D-I 1 1 1 1
F3H-IN 1 1 1 1

F-102A 1 1 1 1

F-100D 2 2 2 2 2

FJ-4 1 1 1 1

F-104A 5 5

F1lF-1 1 1 1 1

F-105B 1 1 1 1

F-101C 1 1 1 1

F-106B 1 1 1 1

F-4B 2 2 2 2 2

F-SA 2 2 2 2 2

F-4J 2 2 2 2 2

F-1l1A 1 1 1 1

F-SE 2 2 2 2 2

KL
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TABLE 4. Minimum MSE Models and Aircraft Predicted

A/C Variables
x1 X2  x3 x4  x5  x6  x7  x8  x9  x10  x1  X12

F-80 3 3 3 3 3

FH-1 1 1 1 1 1

F2H-l 6 6 6 6 6 6 6 6 6

F7U-1 1 1 1 1 1

F-84E 5 5 5 5 5 5 5 5 5

F3D-1 1 1 1 1 1

F-86H 2 2 2 2 2 2 2 2 2 2

F9F-8 1 1 1 1 1

F4D-l 1 1 1 1 1

F3H-lN 7 7 7 7 7 7 7 7 7

F-102A 8 8 8 8 8 8 8 8 8 8 8

F-100D 1 1 1 1 1

FJ-4 1 1 1 1 1

F-104A 2 2 2 2 2 2 2 2 2 2

F11F-1 1 1 1 1 1

F-105B 2 2 2 2 2 2 2 2 2 2

F-101C 1 1 1 1 1

F-106B 2 2 2 2 2 2 2 2 2 2

F-4B 1 1 1 1 1

F-5A 2 2 2 2 2 2 2 2 2 2

F-4J 1 1 1 1 1

F-111A 4 4 4 4 4 4 4 4 4

F-BE 2 2 2 2 2 2 2 2 2 2
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TABLE 5. Minimum Ck Models and Aircraft Predicted

A/C Variables

X1 x2 x3 X4 X5 X6 X7 X8 X9 X1 0 X 1 X12

F-80 3 3 3 3

FE-1 1 1 1 1

F2H-1 4 4 4 4 4 4 4 4 4

F7U-1 1 1 1 1

F-84E 1 1 1 1

F3D-1 1 1 1 1

F-86H 1 1 1 1

F9F-8 1 1 1 1

F4D-1 1 1 1 1

F3H-IN 1 1 1 1

F-102A 2 2 2 2 2

F-100D 1 1 1 1

FJ-4 1 1 1 1

F-104A 1 1 1 1

Fllp-1 1 1 1 1

F-105B 1 1 1 1

F-101C 1 1 1 1

F-106B 1 1 1 1

F-4B 1 1 1 1

F-5A 2 2 2 2 2

F-4J 1 1 1 1

F-111A 1 1 1 1

F-BE 1 1 1 1
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TABLE 6. Maximum F Models and Aircraft Predicted

'C A/C Variables

X1 X2 X 3  x4  x5  x6  X7  X8  X9 XlO Xll X12

F-80 2 2 2 2
FH-l 1
F2H-1 3 3 3 3 3

F7U-1 1

F-84E 1

F3D-1 1

F-86H 1

F9F-8 1

F4D-1 1

F3H-1N 1

F-102A 1

F-100D 1

FJ-4 1

F-104A 1

FllF-l 1

F-105B 1

F-101C 1

F-106B 1

F-4B 1

F-5A 1

F-4J 1

F-111A 1
F-SE 1

I
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TABLE 7. R2 Models and Aircraft Predicted

A/C Variables

xl X2  x3 x4 x5 x6  x7  x8  x9  xO1 x11  x12

F-80 3 3 3 3

FH-1 1 1 1 1

F2H-l 1 1 1 1

F7U-1 1 1 1 1

F-84E 1 1 1 1

F3D-l 1 1 1 1

F-86H 1 1 1 1

F9F-8 1 1 1 1
F4D-1 1 1 1 1
F3H-IN 1 1 1 1

F-102A 1 1 1 1

F-100D 1 1 1 1

FJ-4 1 1 1 1

F-104A 1 1 1 1

F11F-1 1 1 1 1

F-105B 1 1 1 1

F-101C 1 1 1 1

F-106B 1 1 1 1

P-4B 1 1 1 1

F-5A 2 2 2 2 2

F-4J 1 1 1 1

F-l11A 2 2 2 2 2
F-SE 1 1 1 1



TABLE S. MSEP Models and Aircraft Predicted

A/C Variables

x 1 X 2  x 3  x 4  X 5  x 6  X 7  x 8 X9  X 1 1 1

F-80 x x x x

FH-1 x

F2H-1 x )C x x X X x x

F7U-l x x x

F- 84E x

F3D-1 1

F-86H x x

F9F-8 X x

F4D-1 x

F3H- lN x

F-102A x x x

F-100D x x x

FJ-4 x x x

F-104A x x

F11F-1 x x

F-105B x x

F- 10 C x

F-106B x x

F-4B x x x x x

F-5A x x

F-4J x x

F-11lA x x x

F-SE x

4w.
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Table 9 indicates the importance of careful data base
formation with respect to the effect on prediction interval
width of including an apparently nonanalogous aircraft,
the F2H-1. Deleting this data point decreased the average
width of W-optimal models by about 28% on the average.

In summary, the W-criterion deserves close attention as
a model building device when the object of analysis is pre-
diction at a known point in the space of predictor variables.
Mahalanobis distance is a natural measure of this analogy
between similar systems. Ignoring the degree of analogy
between the object system and the historical data base can
result in choosing a model which, in order to predict the
cost of the object system, may be required to perform a large
extrapolation, a dangerous practice in regression analysis.
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TABLE 9. Observation Deleted and Maximum Reduction in
Width of the Prediction Interval for Each Aircraft

A/C Reduction
A/C Deleted (%)

F-80 F2H-l 33.23

FH-1 F2fl-I 31.06

F2H-1 F-102A 26.01

F7U-I F2H-1 25.20

F-84E F2H-l 25.17

F3D-I F2H-I 33.22

F-86H F2H-1 16.39

F4D-I F2H-l 25.48

F3H-1N F2H-l 25.59

F-102A F2H-l 25.51

F-100D F2H-1 31.31

FJ-4 F2H-l 29.53

F-104A F9F-8 7.37

FlIF-l F2H-l 26.08

F-105B F2H-I 28.79

F-101C F2H-1 25.20

F-106B F2H-1 25.49

F-5A F2H-I 39.37

F-4J F2H-1 32.78

F-1lIA F2H-1 29.64

F-8E F2H-1 31.78

Li
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